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ABSTRACT: Online microdja]ysis is a Sampling and Disrupted Circadian Serotonin Surge Associated with Reduced SERT Expression

detection method that enables continuous interrogation of
extracellular molecules in freely moving subjects under
behaviorally relevant conditions. A majority of recent
publications using brain microdialysis in rodents report sample
collection times of 20—30 min. These long sampling times are
due, in part, to limitations in the detection sensitivity of high
performance liquid chromatography (HPLC). By optimizing
separation and detection conditions, we decreased the
retention time of serotonin to 2.5 min and the detection

= . 3-min sampling Tntervals

threshold to 0.8 fmol. Sampling times were consequently reduced from 20 to 3 min per sample for online detection of serotonin
(and dopamine) in brain dialysates using a commercial HPLC system. We developed a strategy to collect and to analyze dialysate
samples continuously from two animals in tandem using the same instrument. Improvements in temporal resolution enabled
elucidation of rapid changes in extracellular serotonin levels associated with mild stress and circadian rhythms. These dynamics
would be difficult or impossible to differentiate using conventional microdialysis sampling rates.
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he neurotransmitter serotonin (S-hydroxytryptamine; S-
HT) mediates a wide range of physiological functions in
the central and peripheral nervous systems, as well as in
peripheral organs.' > Serotonin is thought to act principally as a
modulatory neurotransmitter via interactions with its six
families of G-protein-coupled receptors (5-HT,_,,_,).*” Ultra-
structural studies show that serotonin transporters (SERT) are
located extrasynaptically, suggesting a volume transmission
mode of action.® Furthermore, despite the fact that serotonin-
selective reuptake inhibitors (SSRIs) block serotonin uptake
almost immediately, antidepressant effects are often not
apparent until several weeks after initiating treatment.”'’
Delayed therapeutic outcomes contribute to the perception
that serotonin acts as a tonic regulator of neurotransmission.
Evidence also suggests a broader role for serotonin.
Serotonin axons directly form axo-dendritic and axo-axonal
connections."'™** In addition to characteristic tonic firing
patterns, some serotonergic neurons have been reported to
exhibit burst firing in vivo.">™'” Moreover, 5-HT; receptors,
which are ligand-gated ion channels, allow serotonin to induce
rapid changes in membrane potentials in excitatory and
inhibitory neurons in hippocampus and cortex, respectively.'®"?
SSRIs and other antidepressants cause changes in firing rates
and electrophysiological characteristics of serotonergic neurons
in the dorsal raphe,”>*! as well as nonserotonergic neurons in
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other brain areas involved in emotional responses, including
prefrontal cortex,”> mesoaccumbens,”® ventral tegmental area,”
hippocampus,® and locus coeruleus.*® Thus, in addition to
acting as a neuromodulator, serotonin appears to function as a
fast-acting “classical” neurotransmitter, making it necessary to
investigate serotonin neurotransmission with high temporal
resolution. The ability to measure transient changes in
extracellular serotonin will also be important for discovering
how behaviorally relevant information is encoded in
serotonergic signaling.

Conventional microdialysis, which is well suited for
measuring basal neurotransmitter levels, allows for sampling
over periods ranging from minutes to months, and permits
continuous measurement of neurotransmitters in the extra-
cellular fluid.*”** No-net-flux (NNF) microdialysis, also
referred to as zero-net-flux, is used to determine basal
extracellular concentrations corrected for in vivo extraction
fraction.”*>® In the past decade, programmable infusion
pumps and autoinjectors, and advanced analytical instrumenta-
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Figure 1. Sensitivity and tandem “fast” microdialysis for serotonin. (A) Representative chromatograms of serotonin standards. Gray areas depict
integrated peak areas. The lowest level at which serotonin could be reliably detected was ~0.8 fmol. (B) Quadratic curve-fit of standards. (C) Basal
dialysate samples from two tandem-linked SERT+/+ mice were injected 3 min apart. Fast separation enabled 6 min dialysate sampling with 3 min
online analysis of two samples in the same chromatogram. The retention time of serotonin was 2.2 min. Basal serotonin levels were 3 fmol (red peak,
0.16 nM) and 9 fmol (blue peak, 0.47 nM) in 18 L dialysate samples from two mice without correction for probe recovery.

tion have enabled the rapid adoption of online microdialysis.
Here, dialysate samples from awake animals are directly
transferred to instrumentation, as opposed to collection,
storage, and later analysis.”” These advances have made it
possible to couple neurochemical measurements with behav-
ioral analyses.**** Additionally, progress has been made for
highly time-resolved measurements of many neurotransmitters,
some with resolution in the range of seconds, using online
microdialysis.*

Our colleagues and we recently reported significant improve-
ments in the separation and detection of serotonin in dialysates
collected offline via high pressure and temperature separations
using custom instrumentation.*** Thus, the stage is set for
combining advances in chromatographic analysis of serotonin
with online microdialysis for rapid detection of transient
changes in extracellular serotonin concentrations. Here, we
report on progress in this regard. Using fast online micro-
dialysis, we observe brief, physiologically coupled changes in
extracellular serotonin levels. The methods described take
advantage of improvements in commercial instrumentation and
therefore, are readily accessible to other neuroscientists.

B RESULTS AND DISCUSSION

Sampling Times for in Vivo Brain Microdialysis over
the Past 30 Years. Using the keywords “brain” and
“microdialysis”, we performed a literature survey on PubMed
to investigate the sampling times most commonly used in
preclinical in vivo microdialysis research over the past 30 years
(Table S1, Supporting Information). We established three
epochs for our search based on publication patterns: the
“pioneer” or early period (1984—1987), the “widespread use”
period (1988—2000), and the “recent” period (2001—2012).
For detailed information regarding the selection and sampling
of these epochs, see Table S1 in Supporting Information.
Within each epoch, representative search periods each yielded
15—41 results from which to examine sampling times (Table
S1).

The survey revealed a trend in microdialysis research toward
longer sampling rates over time. In the pioneer period, 20% of
published articles used 5 min-sampling intervals. This dropped
to 6% of articles in 2000, and by 2012, no papers were found
that sampled at this high rate among representative papers. At
the same time, the percentage of studies that used sampling
times of 20 min or more increased, from 35% in the pioneer
period to 82% in 2012.
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At least three major factors appear to contribute to this shift.
First, studies from the pioneer period primarily focused on
amino acids such as glutamate, aspartate, and y-aminobutyric
acid (GABA). Concentrations of these amino acids are
relatively high in brain dialysates (>1 uM). As a result, small
dialysate volumes and hence, short sampling times could be
employed because the concentrations of these amino acid
neurotransmitters were within the detection limits of
contemporaneous HPLC instrumentation. The development
of more sensitive instruments enabled researchers to investigate
molecules with lower basal concentrations, including the
monoamine neurotransmitters norepinephrine (NE), dopa-
mine (DA), and serotonin. These transmitters are found at
nanomolar to picomolar concentrations in dialysate samples.
However, to detect these low concentrations, longer sampling
times were needed.

In addition to the challenges posed by the low physiological
concentrations of monoamine neurotransmitters, sampling
rates have been impacted by the increased availability of
microdialysis techniques. In the 1980s, investigators who
developed the technique carried out microdialysis. These
investigators had strong knowledge of the related method-
ologies, and used them optimally. Once in vivo microdialysis
became a more common method, many practitioners
presumably had less expertise regarding separations and
detection, and were hampered by limitations of commercially
available instrumentation.

Finally, the shift toward longer sampling times has been
encouraged by the development of reverse microdialysis, which
allows introduction of exogenous substances into the
extracellular space through the microdialysis probe.*>** One
advantage of this method is that a drug can be delivered into a
precise brain region. It is also straightforward to manipulate the
dose and time course of drug effects compared to systemic
administration. Changes in the concentrations of endogenous
substances in response to administration of a drug can be
monitored simultaneously. As a result, microdialysis has been
commonly used in pharmacological and toxicological studies, in
which high temporal resolution is generally not necessary.*

Faster Online Microdialysis for Serotonin (and
Dopamine). By optimizing analysis conditions, we have
reduced our detection threshold for serotonin from ~5°***
to 0.8 fmol (Figure 1A,B). Simultaneously, we decreased the
retention time for serotonin from 17—20 min®**** to ~2 min
(Figure 1C). Using similar analysis conditions, both dopamine
and serotonin were resolved with retention times of 1.2 and 2.6
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Figure 2. Serotonin release in response to saline injection. (A) Basal serotonin dialysate samples were collected for 30 min in the presence of 1.2 yM
citalopram. A single intraperitoneal injection of saline (1 mL/kg body weight) was then administered with additional sampling for 60 min. For each
subject, the mean serotonin concentration in the first S samples (30 min) was delineated as 100% CIT-baseline. Samples were analyzed relative to
this baseline to assess the effects of injection on extracellular serotonin. The dialysate sampling rate was 6 min. In (B)-(E), samples were combined to
simulate the effects of saline injection at longer sampling times, i.e., 12, 18, 24, and 30 min, respectively. (F) Comparison of apparent peak values at
each sampling interval. The ability to detect rapid physiological changes in extracellular serotonin decreases with increasing sampling times. Basal
serotonin was 0.83 + 0.1 nM, which was increased by CIT perfusion to 7.0 + 2 nM. Data are from SERT+/+ mice (N = 7). *P < 0.0S.

min, respectively (Figure S1A). This enabled concurrent
analysis of both neurotransmitters by online microdialysis in
mice with a sampling time of 3 min.

Taking advantage of decreased retention times and increased
sensitivity, we developed a tandem online injection setup that
allowed a single HPLC instrument to analyze samples from two
subjects simultaneously and in an automated manner. Here,
dialysate samples from each mouse were collected at 6 min
intervals via two online autoinjectors (Figure S2). Injections
were staggered by 3 min such that two samples (one from each
mouse) were analyzed in a single 6 min chromatogram (Figure
1C). The retention time for serotonin was 2.2 min and the
serotonin peaks from each mouse were offset by 3 min. In
experiments in which higher temporal resolution is not needed,
including those designed to measure tonic shifts, slow
responses, or changes in basal neurotransmitter concentrations,
this tandem injection method increases the number of subjects
that can be investigated using a single instrument, significantly
reducing the time and costs associated with an experiment.

Dialysate Serotonin Levels Increase in Response to
Saline Injection. Improvements in microdialysis detection
limits and reduced online sampling times have enabled
measurements that more closely approximate real-time neuro-
chemical activity. Using this approach, we observed physiolog-
ically relevant changes in extracellular serotonin levels that were
not detected at 20 min sampling intervals. Debate remains as to
whether a single injection of vehicle is a mild stressor.***’
Despite this, saline injection is often used as a control condition
to differentiate the effects of a drug from those of the injection
itself. In previous studies, changes in extracellular serotonin
levels in response to intraperitoneal (ip) saline injection have
not been observed when dialysate samples were collected every
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20 min in striatum (unpublished observations). Here, high
temporal resolution revealed brief but measurable increases in
dialysate serotonin levels in the hippocampus following ip
saline (Figure 2).

Collection of dialysate samples began 30 min prior to saline
injection and continued for 60 min thereafter. Sampling
occurred at a rate of 6 min per sample. Artificial cerebrospinal
fluid (aCSF) containing 1.2 pM S-citalopram (CIT) was
continuously infused into the ventral hippocampus beginning
120 min prior to injection and throughout the duration of the
experiment. S-Citalopram is an SSRI antidepressant widely
used in humans.** We previously found that a 30—40 min
infusion of 1.2 uM CIT is sufficient to elevate the local
extracellular serotonin level to a new equilibrium that is
approximately 6X higher than the original basal level. Basal
serotonin levels in the absence of CIT are near the limit of
detection, precluding quantitative analysis of reductions in
these levels. Thus, local CIT infusion was used to raise
extracellular serotonin levels so that potential increases or
decreases in response to saline injection could be investigated.

In the first two 6 min samples after saline injection, there was
a significant increase in dialysate serotonin levels to 210 + 30%
(P < 0.001) and 180 + 30% (P < 0.01) of baseline (Figure 2A).
Increases were no longer statistically significant by the third
sample (13—18 min postinjection, 130 + 20%, P > 0.05)
(Figure 2A). When samples were combined during data
analysis to mimic the results of longer sampling times,
injection-induced increases in extracellular serotonin were
diminished below significance. (Figure 2F) These data show
that saline injection induces brief increases in extracellular
serotonin despite SERT inhibition, suggesting that the effects of
injection involve increases in serotonin release. The effects may
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Figure 3. Reduced SERT expression produces different patterns of spontaneous oscillation in extracellular serotonin levels during the dark phase.
(A) Overlay of typical examples from mice of each genotype. Spontaneous serotonin surges during the dark phase were large in SERT+/+ mice
(solid circles, approximately 1500 times the basal level), while SERT—/— mice (open circles) did not show surges but rather serotonin fluctuated
around basal levels. Spontaneous serotonin surges during the dark phase in SERT+/— mice (half-filled circles) fell between those of the SERT+/+
and SERT—/— mice. There was usually only one large serotonin surge in SERT+/+ mice during ZT13—18, while multiple intermediate-sized
serotonin surges occurred in SERT+/— mice throughout the dark phase, with more changes tending to cluster during ZT13—18. Typical examples of
circadian serotonin surges (black symbols) measured using 3 min sampling from (B) a SERT+/+ mouse, (D,F,H) three different SERT+/— mice,
and (J) a SERT—/— mouse. (C,E,G,JK) Samples are combined to simulate 30 min sampling (blue symbols). Basal serotonin levels were 0.58 + 0.02
nM (N = 14), 0.65 + 0.01 nM (N = 19), and 1.8 + 0.1 nM (N = 15) for SERT+/+, SERT+, and SERT—/— mice, respectively, without correction

for probe recovery.

be specific to hippocampus and/or the presence of an SSRI
because even with 6 min sampling, no change in extracellular
serotonin was observed in the nucleus accumbens after ip
saline.*

Spontaneous Circadian-like Serotonin Surges Occur
in the Dark Phase. In addition to revealing transient
serotonin responses to saline injection, we detected rapid
surges in serotonin levels linked to circadian rhythms by fast
microdialysis. The primary circadian “pacemaker” in mammals
is the suprachiasmatic nucleus (SCN) of the hypothalamus.
Neurons in this nucleus receive input from light-sensitive
retinal ganglion cells®® and maintain an intrinsic cyclic firing
pattern over a period of approximately 24 h. This pattern can
persist in the absence of external cues, but it is entrained by
natural variation in light throughout the day to maintain
synchrony between the SCN and the external environment.
Serotonin neurons originating in the dorsal and median raphe
are thought to modulate SCN activity.*"”

Due to circadian rhythms, time of day is an important
consideration when performing research on living subjects.>®
Jirgen Aschoff, one of the founders of chronobiology,
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introduced the concept of “zeitgeber [time-giver] time” in the
1960s to simplify the reporting of results that were impacted by
circadian-linked changes. Using this system, the time at which
daylight emerges or the lights turn on in the laboratory is
referred to as zeitgeber time zero (ZT0).

We observed spontaneous spiking in serotonin levels
associated with the light-dark cycle by continuous sampling
of dialysate at 3 min intervals for 20 h and throughout the dark
phase. Basal extracellular serotonin concentrations were more
stable during the light phase (ZT0—12) than the dark phase
(ZT12-24) (Figure 3), in agreement with the majority of
previous studies on neurotransmitter levels in nocturnal
rodents.>*~>” Differences in patterns of spontaneous serotonin
oscillation during the dark phase were observed between
wildtype and SERT deficient mice. Continuous recording from
SERT+/+ mice revealed large, spontaneous surges in serotonin
levels during the first half of the dark phase (ZT13—18), when
spontaneous activity and body temperature are highest (Figure
4, dark gray bar B). These surges reached concentrations that
were 700—1500 times higher than basal levels (Figure 3B).
Extracellular serotonin levels in mice with one copy of the Sert
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Figure 4. Schematic of circadian rhythms. Data are graphed using
relative values. The circadian rhythms of brain glycogen (Gly),
spontaneous activity (Act), body temperature (BT), SCN neuron
activity (SCN), and plasma corticosterone (Cor) are represented by
orange, burgundy, blue, purple, and red lines, respectively. Brain
glycogen serves as secondary energy storage and changes in glycogen
concentrations are markers of global brain activity.’” The light gray
areas represent the dark phase during a 12/12 h light/dark cycle. The
dark gray bar “A” represents the time frame for potential circadian
shifts in serotonin levels during the light phase (refer also to Figure S).
The dark gray bar “B” represents the time frame over which
spontaneous serotonin surges were observed in SERT+/+ and SERT
+/— mice (refer also to Figure 3).

gene inactivated (SERT+/— mice) showed smaller, irregular
surges (Figure 3D, F, H). Here, intermediate serotonin surges
(1-800-fold) occurred throughout the dark phase, with larger
surges tending to occur during the first half of the dark phase
(ZT13-18). Mice lacking both copies of the Sert gene
(SERT—/— mice) showed no evidence of similar serotonin
surges, though small fluctuations around basal levels were
observed (Figure 3J).

Microdialysis experiments investigating circadian patterns are
often carried out using sampling times of 30 min or longer due

to the long time frame, that is, 24 h, over which circadian
changes are measured. To assess the impact of a prolonged
sampling time on the ability to detect rapid circadian-linked
changes in extracellular serotonin levels, samples were
combined into contiguous groups of 30 min samples during
data analysis (Figure 3C, E, G, I, K). Serotonin surges that
could be resolved at 3 min sampling rates were diminished
when data were grouped into 30 min bins. In SERT+/— mice,
multiple surges merged into a single, wider peak when the
sampling time was increased from 3 to 30 min (Figure 3E, G,
I). In SERT+/+ mice, the magnitudes of serotonin surges were
greatly decreased when samples were combined (Figure 3C).
These findings indicate that slow sampling during circadian
research is likely to miss important aspects of the circadian
profile of serotonin, and possibly of other neurotransmitters.

To assess the behavioral relevance of these serotonin surges,
we compared their time course to those of other circadian
patterns. A schematic of mammalian circadian changes in SCN
activity,® brain glycogen concentrations,” plasma cortico-
sterone levels,® body temperature,®’ and spontaneous
locomotor activity®® is shown in Figure 4. Phasic serotonin
surges in SERT+/+ and SERT+/— mice appear to be
correlated with increases in brain activity, spontaneous
locomotor activity, and plasma corticosterone concentrations.
This suggests that serotonin may play an essential role in the
generation and regulation of the circadian rhythmicity of these
physiological processes. Compared to wild type mice, SERT—/
— mice exhibit altered sleep patterns,®® reduced brain glucose
utilization,** and hypolocomotion in the open field test,*® but
not in the home cage.66 The lack of spontaneous serotonin
surges in SERT—/— mice may contribute to these differences.
Rats and mice exposed to serotonin reuptake inhibitors during
early postnatal development also show disrupted sleep patterns
thought to model changes observed in patients with mood
disorders.”” 7> Given the links between alterations in the
serotonin system and sleep regulation,é3 circadian changes in
the regulation of serotonin levels might be involved in
disrupted sleep patterns in patients with mood and/or sleep
disorders.
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Figure 5. No-net-flux analysis of extracellular serotonin levels. In this example, the order of infusion of serotonin concentrations ([S-HT];,) was 0,
15,2.5, 5, 50, and 30 nM. (A) The overall R of the linear regression (black line) was 0.97 for all 6 infused concentrations across ZT2-11:30. The R*
value was improved by analyzing data from either the first 6 h (purple line, R? > 0.99, ZT2:30—8:30 for 4 concentrations) or the last 6 h (blue line,
R? > 0.99, ZT5:30—11:30 for 4 concentrations). (B)—(G) Each serotonin infusion concentration generated 9—12 data points. Individual points are
shown for increasing [S-HT];,. Distributions of the data at each infusion concentration are tightly clustered showing the precision of the

measurements. The overall regression line is shown in black.
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NNF Analysis of Extracellular Serotonin. To investigate
basal serotonin concentrations further and to avoid sponta-
neous serotonin surges during the dark phase, we conducted
NNF analyses during the light phase. Using a tandem online
injection method, which enables a single HPLC instrument to
simultaneously analyze dialysate samples from two subjects, we
carried out NNF using 6 min sampling on more than 100 mice
during 6 months. Faster sampling also allowed more data
points to be collected for each 90 min infusion of different
concentrations of serotonin (usually 10—14 points per
concentration (C;,), Figure SB—G). This enabled greater
accuracy in estimating the recovered concentration (Cout)-
The average R* value of all data collected at 6 min per sample
during ZT2-11:30 was 0.97 + 0.002 (Figure SA). At a
collection rate of 20 min per sample, only 5—6 data points can
be obtained in a 90 min serotonin infusion, and the overall R>
value was ~0.90.>***

The R* value was improved (>0.99) when the first 6 h
(ZT2:30—8:30 for 4 concentrations) or the last 6 h (ZT5:30—
11:30 for 4 concentrations) were analyzed separately. This
could be due to subtle circadian shifts in basal serotonin levels
during the light phase (Figure 4, dark gray bar A). These
findings suggest that when NNF experiments are confined to a
shorter time span and a greater number of samples per infusion
concentration are analyzed, estimations of basal extracellular
serotonin concentration are improved. Greater accuracy enables
small but biologically important differences in extracellular
serotonin to be detected. Based on the current findings, the
time for each infusion of serotonin can be reduced to 45 min
using 3 min sampling, or to 60 min using 6 min sampling. This
would yield 5—6 data points per concentration and allow
completion of a NNF experiment within 6 h, avoiding major
circadian changes.

Bl CONCLUSIONS AND FUTURE PROSPECTS

Fast microdialysis can reveal new information about neuro-
transmitter signaling. The role of glutamate as a primary
excitatory transmitter is supported by microdialysis findings
using short sampling times.”>”* Tt is likely that rapid
measurement of serotonin by microdialysis will similarly
elucidate physiologically important dynamics associated with
serotonergic neurotransmission. We anticipate that temporally
resolved microdialysis*"** will enable investigation of serotonin
release and reuptake kinetics in mice with different levels of
SERT expression,”® which will inform us about the effects of
variations in serotonin signaling in humans with native SERT
gene polymorphisms.”® Additionally, online microdialysis can
be performed in experimental animals during behavioral
tasks.’®* High temporal resolution and multiplexed measure-
ments will be vital to understanding how behaviorally relevant
information is encoded in chemical neurotransmission.”””®

B METHODS

Animals. Female and male mice from a SERT-deficient linage on a
mixed CD1 X 129S6/SVev background at 10—14 months of age were
used for all experiments.”” Three different genotypes (SERT+/+,
SERT+/—, and SERT—/—) were generated from SERT+/— mating
pairs, and were maintained at the University of California, Los Angeles
(UCLA). All mice were housed in groups of 2—4 same-sex siblings per
cage until guide cannula implantation. Food and water were available
ad libitum, and the light—dark cycle (12/12 h) was set with lights on at
0400 h (ZT0). The same light schedule was strictly maintained in the
room where microdialysis was performed. UCLA is fully accredited by
the Association for Assessment and Accreditation of Laboratory
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Animal Care International (AAALAC). All animal care and use met
the requirements of “The Guide for the Care and Use of Laboratory
Animals”, revised 2011. The UCLA Chancellor’s Research Program
preapproved all procedures.

High Performance Liquid Chromatography. An Eicom
integrated HPLC system (HTEC-500, Eicom Corporation, San
Diego, CA) was used with an Eicompak PP-ODS II stationary phase
(4.6 mm id. X 30 mm, 2 um particles), a WE-3G graphite-working
electrode, and two EAS-20s online injectors. This instrument has been
optimized to reduce overall dead volume, and noise from the
electrochemical cell. To prevent oxidation of analytes in dialysate
samples, the manufacturer has replaced the majority of metal parts in
the flow stream with inert materials. The composition of the mobile
phase was 96 mM NaH,PO, (Fluka Cat#17844), 3.8 mM Na,HPO,
(Fluka Cat#71633), pH 5.4, 2.8% MeOH (EMD Cat#MX0475-1), 50
mg/L EDTA-Na, (Fluka Cat#03682), and S00—1000 mg/L sodium
decanesulfonate (TCI Cat#I0348) in water purified via a Milli-Q
Synthesis A10 system (EMD Millipore Corporation, Billerica, MA).
Separation occurred at a flow rate of 450—750 uL/min, and the
column temperature was maintained at 25—30 °C. Electrochemical
detection occurred at an applied potential of +450 mV at the working
electrode vs Ag/AgClL

Guide Cannulae Implantation. Mice were rendered unconscious
by 5% isoflurane for ~5 min in an induction chamber. A surgical
anesthetic plane was then maintained with 2% isoflurane throughout
the surgery. Animals were mounted on a stereotaxic frame (Kopf
Instruments, Tujunga, CA). Eyes were protected from corneal
dehydration using sterile ophthalmic ointment. The fur over the
surgery area was shaved, and 0.05—0.1 mL bupivacaine was injected
subcutaneously (sc) at the surgical site to provide local analgesia
during surgery. An injection of 5 mg/kg ketoprofen was administered
sc at the nape of the neck to provide postsurgical analgesia.

The surgery site was sterilized by applying 3 alternating scrubs with
Betadine and 70% isopropanol prior to exposing the skull with a S mm
X 5 mm circular incision. The skull was cleaned and dehydrated with
2% medical grade H,0,. One medical grade flat-tip stainless steel
anchor screw (Eicom Corp., San Diego, CA) was affixed to the skull,
approximately 2 mm ventral to the guide cannula implantation site to
anchor the dental resin and guide cannula to the skull. A 0.7 mm
diameter burr hole was drilled in the skull (coordinates relative to
Bregma for left ventral hippocampus: AP —2.8 mm, ML —3.5 mm, DV
—2.2 mmy; left ventral striatum: AP +1.2 mm, ML —1.2 mm, DV —3.5
mm).

A sterilized 32-gauge needle was inserted into the hole to pierce the
dura mater without damaging the surface of the brain. A guide cannula
for a CMA/7 microdialysis probe (CMA/Microdialysis, Harvard
Apparatus, Holliston, MA) was slowly lowered into the hole. Dental
resin (Trim II from Bosworth Company, Skokie, IL) was used to
secure the guide cannula to the surrounding exposed skull and to seal
the exposed area. A stylet was inserted into the guide cannula to keep
it free from debris until the microdialysis probe was inserted. Mice
were allowed to recover from surgery for at least 3 days prior to
microdialysis.

Dialysis Configuration. Two EAS-20s autoinjectors (Eicom
Corp., San Diego, CA) were linked in tandem to enable HPLC
analysis of dialysate samples from two mice in a single chromatogram
(Figure 1C). The linking arrangement for the autoinjectors is shown in
Figure S2 in the Supporting Information. The flow diagram for the
dialysis setup is shown in Figure $3. One CMA/400 syringe pump (4-
channel) was used to deliver aCSF at a constant flow rate to two mice
(147 mM NaCl (Fluka Cat#73575), 3.5 mM KCI (Fluka Cat#05257),
1.0 mM CaCl, (Aldrich Cat#499609), 12 mM MgCl, (Aldrich
Cat#449172), 1.0 mM NaH,PO, (Fluka Cat#17844), 2.5 mM
NaHCOj; (Fluka Cat#88208); pH 7.3 + 0.03 using NaOH (Aldrich
Cat#415413), modified from Trillat et al.*° and Mathews et al.).**
Additionally, two CMA/102 programmable syringe pumps were used
to deliver aCSF containing different concentrations of serotonin (2.5,
S, 15, 30, and S0 nM) for NNF experiments in a preprogrammed
order. The 2.5, 5, and 1S nM concentrations were infused using
pseudorandomization across subjects, followed by 30 and S0 nM
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infusion on an alternating schedule. A series of CMA/110 zero-dead-
volume liquid switches was used to permit manual switching between
solutions to deliver the desired solutions to the microdialysis probes
during the course of experiments without introducing air into the
infusion route (Figure S3).

Microdialysis. During ZT10—12 on the day before microdialysis,
each mouse was lightly anesthetized with isoflurane, and a 2 mm
CMA/7 microdialysis probe was inserted slowly into the brain. The
animal was allowed to recover for 30 min while aCSF was flushed
through the probe at 3 yL/min. The aCSF flow rate was then lowered
to 1.1 yL/min for overnight perfusion (except for circadian studies, see
below). Microdialysis experiments were carried out during ZT2—8 on
the second day. The aCSF flow rate was increased to 3 yL/min 30—60
min before the first dialysate sample was collected for analysis. After
collecting basal serotonin dialysate samples for 120 min, aCSF
containing 1.2 yM CIT was infused into the brain through the
microdialysis probe for another 120 min. Then, a single ip injection of
sterile saline (1 mL/kg) was administered. Samples were collected at 6
min intervals. Serotonin measurements were normalized relative to the
mean serotonin concentration of the S samples (30 min) prior to
saline injection (100% CIT-elevated baseline).

For circadian studies, during ZT6—7 on the first day of the
experiment, mice were lightly anesthetized with isoflurane. A 2 mm
CMA/7 microdialysis probe was inserted through the guide cannula,
and aCSF was infused through the probe at 3 yL/min throughout the
experiment. Mice were allowed to recover from acute tissue damage
due to probe insertion for at least 3 h before data collection. Circadian
microdialysis experiments were carried out from ZT11 on the first day
through ZT5—6 on the second day. Samples were collected every 3
min. The data were normalized relative to mean serotonin
concentrations in samples collected during ZT11—12 (before lights
off).

For NNF, different concentrations of serotonin in aCSF were
delivered in a predetermined order using a programmable CMA/102
infusion pump. Prior to collecting dialysate samples, each serotonin
solution was infused through all dialysate tubing (except the probe),
collected by the autoinjector, and analyzed by HPLC. This method of
analyzing serotonin concentrations under conditions approximating
the dialysis setup enables more accurate estimates of C,,, as previously
described.**

No-net-flux was carried out during ZT2—11:30 on the second day at
a flow rate of 3 yuL/min for 6 different concentrations of serotonin.
Basal serotonin levels were measured for 120 min using aCSF devoid
of serotonin. Then, aCSF solutions containing 2.5, 5.0, or 15 nM
serotonin were delivered for 90 min each in a predetermined order by
CMA/102 programmable syringe pumps. The concentrations of
serotonin exiting the probe were measured. After this, higher
concentrations of serotonin (30 or SO nM) were delivered for 90
min per concentration in a predetermined order. The collection time
for each NNF sample was 6 min.

Histological Confirmation of Probe Placement. After micro-
dialysis, mice were lightly anesthetized with isoflurane for probe
removal, and sacrificed by cervical dislocation. Brains were removed
and preserved in 7% paraformaldehyde in phosphate buffer (PFA-PB)
for 48—72 h at room temperature on an orbital shaker. Brains were
then transferred to 30% sucrose-PB. Preserved brains were sectioned
at 50 pm using a refrigerated cryostat. Sections were stained by cresyl
violet. Probe position was examined using a light microscope. Only
data from brains in which the probe was correctly located in the
ventral hippocampus or ventral striatum were included in the analysis.

Statistics. All data were analyzed by GraphPad Prism v6.0b. The
effects of saline injection were analyzed by Student’s unpaired two-
tailed ¢ tests. Data for NNF were analyzed by linear regression to
generate x-intercepts (extracellular serotonin concentrations) for
individual subjects. All values are presented as means + SEMs. P <
0.0S was considered statistically significant. Significance is indicated in
figures as ***P < 0.001, **P < 0.01, and *P < 0.0S.
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